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INTRODUCTION 

By applying nanotechnology to enhance 

pharmaceuticals and healthcare, nanomedicine 

creates a new field that holds promise for the 

twenty-first century
1,2

. By identifying the location 

of human disease, nanomedicine can target 

biological cells with drugs, diagnostics, and 

treatments. The diagnosis was first based on the 

idea of cell theory, but atomic and molecular levels 

of inquiry have since been reached
3
. As a result, the 

nanoscale size gives materials additional 

characteristics including structure, form, and large 

surface area, which enhance its forms for therapy 

and diagnosis
4,5

. Therefore, delivering the desired 

molecules to their target areas while reducing 

adverse effects and optimizing therapeutic effects is 
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ABSTRACT 

In the past ten years, nanotechnology has significantly addressed a number of nanomaterials in the biomedical 

field, offering the chance to obtain more effective therapy, more targeted distribution, and an enhanced safety 

profile. During drug distribution, nanocarriers may be able to shield the active chemical. The delivery of 

medications and genes has improved the molecule's bioavailability at the illness site and provided good control 

over the molecule's release, depending on the nanosystem being used. This chapter covers a variety of cutting-

edge nanomaterials intended to create improved nanocarrier systems for treating ailments like malaria, heart 

failure and cancer. Additionally, we show how promising nanocarriers are for facilitating biodistribution and 

diagnostic ease for effective clinical cancer therapy. 
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the primary goal of nanomaterials in delivery 

applications
6,7

. Nanomaterials are essential to drug 

delivery systems because they enhance the 

solubility and stability of pharmaceuticals, regulate 

their release, reduce their toxicity, and enhance 

their therapeutic benefits
8
. Numerous nanocarrier 

systems, including polymeric, inorganic, and 

nanohydrogel nanoparticles, have been produced
9
. 

It's also crucial to comprehend how they interact 

with specific cells, how they are administered, how 

bioavailable they are, and how they are 

distributed
10,11

. Conversely, gene delivery presents 

novel approaches to illness treatment by the 

introduction of new genetic materials into cells 

through ex vivo and/or in vivo administrations
12

. 

Using lipids and calcium phosphate, various vectors 

transmit DNA chemical transduction and 

transfection, ensuring the gene-transferring 

process
13

. Generally speaking, these systems are 

more advantageous when treating various illnesses, 

particularly cancer, which is predicted to be the 

second biggest cause of death globally in 2020, 

behind heart disease, which accounts for almost 10 

million deaths or one in six deaths. (WHO; 2022). 

Furthermore, according to
14

, their successful 

research demonstrated protection against a number 

of viral illnesses, including the coronavirus, the 

Ebola virus, and malaria. Furthermore, a number of 

studies demonstrated their efficacy in delivering 

large doses of medicinal drugs, biodegradability, 

safety, non-viral techniques and diversity of 

structural conformations
15,10

. 

 

SPECIFIC DRUG ADMINISTRATION 

In addition to the adverse effects of the delivered 

pharmaceuticals, the use of big sized materials in 

drug delivery presents a number of difficulties, such 

as low bioavailability/solubility/absorption, 

problems with target-specific distribution and poor 

in vivo stability. Consequently, utilizing novel drug 

delivery techniques to concentrate medication in a 

particular part of the body may present a chance to 

address these pressing problems. The field of 

nanotechnology creates materials at the nanoscale, 

such as metallic, lipid, and natural or 

synthetic/semisynthetic polymers. By serving as 

stability enhancers, nanoparticles (NPS) can be 

employed in targeted drug delivery to improve the 

bioavailability, biodistribution and accumulation of 

treatments, preferably in the targeted disease area. 

By delivering medications to specific areas, these 

colloidal systems can decrease toxicity, minimize 

side effects, and enhance therapeutic efficacy while 

shielding the drug from biological deterioration and 

allowing for temporal and spatial management of 

therapies in the precise site of an illness
16-18

. In 

order to improve efficiency over conventional free-

drug formulations, passive targeting was the basis 

for the initial application of nanocarriers in drug 

delivery. A novel method has been presented, 

nevertheless, which entails active targeting by 

adding particular ligands to improve drug delivery 

to target locations via conjugation techniques or 

magnetic fields. Nanotechnology therefore has 

promise for fostering innovation in medication 

compositions and delivery systems. An effective 

and site-specific distribution of chemicals makes it 

easier to reach a therapeutic outcome that can 

combat immunological illnesses, tumor diseases, or 

neurodegenerative disorders. In order to uncover 

new therapeutic targets and approaches, this Special 

Issue brings together various aspects of 

nanotechnology research, such as review papers
19,20

 

mathematical models to determine the body's 

magnetic nanoparticle trajectories or explain the 

structures of metal-decorated fullerenes
21-22

, the 

drug delivery systems of various antitumoral 

agents
23-26 

and the biocompatibilities of stealth 

liposomes and hybrid nanosystems containing 

surfactant agents
27,28

. 

 

MEDICATION ADMINISTRATION 

During the past decade, nanotechnology-based drug 

delivery has shown significant interest where 

studies have enhanced the administration and the 

efficacy of active molecules
29,7

. By improving the 

solubility, stability and minimizing the toxicity of 

drug molecules, researchers investigated the use of 

chemical and biological approaches giving high 

clinical benefits. However, most related research is 
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still in the preclinical stage and safety assessment 

remains a difficult task. Therefore, future research 

should concentrate on therapeutic nanomedicine’s 

performance modification, molecular mechanism, 

and potential toxicity
30

. This led to the discovery 

that different types of nanocarriers have many 

benefits, including the ability to- 

(i) Prevent fluctuations in drug concentration while 

maintaining a consistent dose and target, (ii) 

provide maximum therapeutic effects while 

reducing side effects and toxicity risks and (iii) 

shield medications from enzymatic catalysis
31

. The 

many nanocarriers employed in biomedical 

applications-discussed in the ensuing sections are 

shown in Figure No.2. 

 

METALLIC NANOPARTICLES 

Because of their distinct physicochemical 

characteristics and wide range of functional groups 

that enable interaction with various therapeutic 

molecules, metallic nanoparticles have captivated 

researchers in the biomedical area
32

. It is interesting 

to note that metals like iron (Fe), zinc (Zn), and 

titanium (Ti), as well as metal nanoparticles like 

silver (Ag) and gold (Au), have the potential to be 

used in drug delivery systems due to their unique 

size, shape and composition. 

 

GOLD NANOPARTICLES 

Because they maintain high stability in the drug 

release process and have strong bond mechanisms 

via covalent and non-covalent conjugation, gold 

nanoparticles (AuNPs) are the most functionalized 

metallic nanoparticles in drug delivery
32

. These 

nanoparticles are created using a variety of 

techniques, including the colloidal approach, and 

they range in size and shape from 3 to 200nm
33

. 

Typically, the bottom-up technique of reducing 

gold precursors with sodium borohydride or sodium 

citrate yields AuNPs for use in drug carriers
34

. 

Drugs, enzymes, plant extract, or other compounds 

functionalize the resulting AuNPs. Transferrin, 

tannic acid, polyethylene glycol (PEG), porphyrin, 

and other capping agents then improve the potential 

delivery and therapeutic benefits
35,36 

(Figure No.3). 

Pharmacological interaction on the surface of gold 

metallic nanoparticles (AuNPs) to functionalize the 

through the administration of anticancer 

medications, functional AuNPs have demonstrated 

good utility in cancer therapy. The morin 

medication encapsulated in AuNPs stimulated 

tumor death in response to tumor growth in a 

xenograft mice model by controlling signal 

crosstalk and increasing the generation of reactive 

oxygen species
37

. A promising nanocarrier to 

reduce the high toxicity of 5-fluorouracil during the 

treatment of breast cancer was 5-fluorouracil 

carried on AuNPS functionalized by casein
38

. 

Analyzing the effective delivery of 5-fluorouracil-

based AuNPS to different tumor cells, Akinyelu and 

Singh (2019) found a great delivery method for the 

treatment of cancer. Effective methotrexate-

conjugated AuNPs were created in a different study, 

and they showed greater cytotoxicity against human 

choriocarcinoma cell lines than free methotrexate
39

. 

Additionally, doxorubicin (Dox), which is 

frequently employed as a model in cancer therapy, 

showed toxicity against the multidrug-resistant 

MCF-7/ADR cancer cells when bound AuNPs 

capped with PEG
40

. An improved Dox carrier 

conjugated with AuNPslipoic acid-modified PEG 

was created by
41

 and it demonstrated stability in 

delivering the Dox into the human hepatocellular 

liver cancer cell line's nucleus. Dox-conjugated to 

glutathione-stabilized AuNPs demonstrated a 

promising delivery mechanism for feline injection-

site sarcomas as a treatment for malignant skin 

tumors
42

. AuNPs conjugated with Dox and capped 

with various biopolymers showed encouraging 

results in treating colon cancer cell lines (DLD-1 

and HCT-116) in a recent study
43

. Furthermore, the 

effective conjugation of Dox and varlitinib within 

AuNPs-PEG was investigated by
44

, revealing the 

suppression of pancreatic cancer cell lines (S2-013 

s) with little adverse effects on normal cells. 

Additionally, the human breast cancer cell line 

MDA-MB-231 was successfully suppressed by 

hesperidin (Hsp) loaded with AuNPs via chemical 

technique, which also increased macrophage 

formation and decreased the production of 
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proinflammatory cytokines (TNF, IL-1β, and IL-6). 

Because of AuNPs' high surface area-to-volume 

ratio, bioinert nature, and low immunogenicity, they 

are widely used in cardiovascular disorders. When 

AuNPs are incorporated into coiled fiber scaffolds, 

the myocardium contracts and relaxes quickly and 

robustly
45

. In order to improve cardiomyogenic 

differentiation
46

, created a hybrid scaffold made of 

AuNP-loaded bovine serum albumin 

(BSA)/polyvinyl alcohol (PVA) nanofibers. AuNPs 

demonstrated effective transport of miR155 into 

macrophages that improve heart function in order to 

treat cardiovascular illnesses in diabetic patients
47

. 

Furthermore, compared to free levofloxacin, the 

administration of the antibiotic within bromelain-

capped AuNPs demonstrated great control and 

localization of the target location while improving 

the antibacterial activity
48

. Furthermore
49

 reported 

that gentamicin was conjugated with AuNPs for the 

purpose of enhancing and delivering severe 

microbial infection. Peptide drug conjugates with 

AuNPs, aside from chemotherapeutic medications, 

exhibit favorable chemical and biological properties 

that enhance target efficacy
50

. 

 

SILVER NANOPARTICLES 

Because of their electrical conductivity, wide range 

of antibacterial action and localized surface 

plasmon resonance effect, silver nanoparticles 

(AgNPs) are well-suited for drug administration
51

. 

According to
52

, medication molecules typically 

interact with AgNPs through a variety of linkages, 

including sulphide/thiol, amine/carboxylic, and 

azide-alkyne bio-conjugation. Using AgNPs
53 

created a conjugate cell-penetrating peptide (TAT) 

for the treatment of multidrug-resistant cancer; this 

drug delivery method demonstrated exceptional 

antitumor effect. The anticancer activity and drug 

delivery of Dox and alendronate (Ald) were 

enhanced by the use of AgNPs as nanocarriers in 

cancer therapy
54

. It's interesting to note that
55 

reported that the delivery system for cancer 

theranostic with less harmful effects was effective 

when using a realistic approach to transport Dox 

within a nanocarrier comprised of Janus AgNPs. 

Using a green approach
56

 created a hybrid material 

comprising AgNPs embedded in 

carboxymethylcellulose (CMC) as a nanocarrier for 

Dox. Strong antibacterial and anticancer properties 

against skin cancer were demonstrated by this 

nanocarrier. AgNPs containing curcumin have 

strong conjugation characteristics, suggesting a 

promising delivery method for cancer therapy. 

Additionally, they exhibit lower hemolytic toxicity 

in comparison to free curcumin
57

. AgNPs-NGR-

graphene oxide (GO) biocompatibility 

demonstrated superior Dox transport to tumor cells 

with strong targeting capabilities and significant 

potential for cancer therapy
58

. The surfactant-free 

AgNPs coated with nanoGO demonstrated strong 

anticancer effect and acted as a potent nanocarrier 

in an effort to improve the delivery and biosensing 

of Dox
59

. According to
60

, the conjugation of 

camptothecin via an acid-labile β propionate on 

AgNPs' surface enhances transport and enables 

tracking of the mechanism "on"/"off" of the release 

process in tumor cells. 

 

TITANIUM, MAGNESIUM, IRON AND ZINC 

NANOPARTICLES 

It is well recognized that titanium oxide 

nanoparticles, or TiO2NPs, have the potential to 

greatly improve drug delivery systems' 

functionality. Generally speaking, there are two 

methods for incorporating the drug molecule into 

TiO2NPs: (i) soaking the particles in an aqueous 

drug solution, or (ii) pipetting a volume of the drug 

solution onto the TiO2NP surface
61

. For instance
62

 

successfully coupled Dox with TiNPs through 

electrostatic interactions, confirming improved 

intracellular cytoplasmic Dox transport with 

superior anticancer efficaciousness against the 

multidrug-resistant MCF-7/ADM cells. Similar to 

this
63

 discovered that PTX-TiO2NPs exhibit greater 

anticancer efficacy than free PTX after using 

TiO2NPs to transport the anticancer medication 

paclitaxel (PTX) into breast cancer cells. The drugs 

were erlotinib (ERL) and vorinostat (SAHA). The 

outcomes demonstrated that by stopping cancer 

cells in their G2/M phase, the hybrid nanocarrier 
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may upregulate the cells. Furthermore, the 

melanoma cancer B16F10 cell lines were treated by 

the chitosan/cobalt ferrite/TiO2 nanofibers coupled 

with Dox via an electrospinning procedure. 

According to
64

, these nanocomposites demonstrated 

the highest localized cancer therapy as well as the 

quickest release of Dox from the nanofibers. 

Conjugated with curcumin, mesoporous TiO2@ 

zinc oxide-GO nanocarriers had note worthy 

anticancer activity and showed promise as drug 

delivery vehicles for colon cancer
65

. According to
66

, 

a recent study showcased the ability of magnetic 

nanoparticles (Fe3O4NPs) functionalized with 3-

aminopropyl) triethoxysilane and coated with 

tragacanth gum and chitosan to deliver curcumin. 

The best-recorded release of curcumin was 60% 

within 120 hours. 

 

APPLICATIONS OF NANOTECHNOLOGY 

IN DRUG DELIVERY TO THE CENTRAL 

NERVOUS SYSTEM 

Among the two most prevalent neurodegenerative 

illnesses are Parkinson's and Alzheimer's 

disorders
67

. Global statistics show that stroke is 

linked to neurological disruption and is the second 

most prevalent disease in the United States after 

Alzheimer's
68-71

. It is also the third largest cause of 

mortality
72

. The research suggests that Iran has a 

two-fold higher stroke prevalence than either 

Europe or North America
73

. The World Health 

Organization estimates that 20 to 60 cases of 

multiple sclerosis occur for every 100,000 people in 

Iran
74,75

. Drug diffusion over the blood-brain barrier 

is the primary therapeutic phase for brain disorders. 

To achieve the best possible therapeutic outcomes 

against neurological illnesses, the safe, appropriate 

and targeted administration of medicinal molecules 

to the central nervous system (CNS) is an 

extraordinary objective
69-80

. 

 

BLOOD-BRAIN BARRIER 

The brain, which is housed in a membrane known 

as the blood-brain barrier, is the most intricate and 

sensitive organ in the body. This boundary is ideal 

for defending brain neurons from dangerous and 

poisonous substances found in blood. Drug 

diffusion to brain tissue is also impacted
81

. Robust 

barriers enclose the brain, preventing the passage of 

any substance, including therapeutic and diagnostic 

agents, into the central nervous system
82

. The 

development of technologies for the efficient 

transportation of medications and molecular 

imaging is necessary to conceptualize the 

physiological features of this blood-brain barrier
83

. 

The bloodstream and brain are kept apart by the 

blood-brain barrier (BBB). The human brain has 

roughly 100 billion neurons. The brain's capillaries 

have a diameter of only 7-10μm
84

. There are 

extremely few entrance points from the 

environment into the brain due to the absence of the 

valvar and intracellular holes in the BBB
81-86

. 

Nevertheless, the BBB can be crossed and 

medication transport to the central nervous system 

(CNS) facilitated when nanoparticles (NPs) and 

polymer coatings are paired
87-89

. Numerous 

advancements in the detection and management of 

brain tumors, trauma and nervous system problems 

have been made possible by this technique
90-93

. 

Many therapeutic polymers are being researched for 

clinical usage in the treatment of cancer and other 

illnesses
94

. The development of novel NPs-based 

methods and tactics aimed at medication delivery to 

the brain is shown in Table No.1 and Figure No.1. 

 

SUBSTANCE TRANSPORT ACROSS THE 

BLOOD-BRAIN BARRIER 

Because the blood-brain barrier (BBB) restricts 

access to the brain and shields it from pathogens 

and other dangerous chemicals, pharmaceutical 

molecules may not be able to reach the brain while 

in circulation. Even tiny chemicals cannot permeate 

the barrier and enter the brain. Despite the fact that 

many necessary molecules can permeate through 

this barrier, medicinal chemicals are frequently left 

out due to their unique characteristics
96,97

. The 

inability of medications to pass through the blood-

brain barrier emphasizes the necessity of creating 

NPs-based drug delivery techniques. Only a 

restricted range of chemicals can diffuse due to the 

BBB. These nanoparticles get beyond this barrier 
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and take several paths to neurons. The BBB has 

been crossed with a number of NPs
71,98,99

. The 

medicine is able to cross the blood-brain barrier 

(BBB) thanks to the NPs' ability to pierce through 

the tight connections between the endothelial cells 

in the arteries. Drug transfer across the endothelial 

cell layer can also be facilitated by NPs' 

endocytosis and transcytosis
99,100

.
 

Lipid 

nanoparticles possess lipophilic characteristics that 

allow them to penetrate the blood-brain barrier and 

enter the brain via many transport channels, such as 

transcellular, paracellular and receptor-mediated 

endocytosis
97,100,101

. Furthermore, NPs have the 

ability to conjugate or coat particular ligands to 

target particular cells and through the use of these 

ligands, they can move from the circulation across 

the BBB via receptor-mediated transcytosis
102-104 

NPs can cross this barrier and arrive at neurons 

through many pathways, as shown in Figure 

No.4
105

.  

Numerous receptors that may selectively bind to 

ligands and internalize into cells are expressed on 

the blood-brain barrier (BBB). NPs may mediate 

the transport of these ligands across the blood-brain 

barrier. The best method for delivering NPs to the 

brain over the BBB has been receptor-mediated 

transport because of the interaction between 

receptors and ligands
97,106,107

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table No.1: Methods and plans for administering medications to the central nervous system 

S.No 

Techniques for 

drug delivery to 

the central nervous 

system by systemic 

route 

Approaches Strategy References 

1 

Non-invasive 

techniques 

Chemical 

Lipophilic analogs 

Prodrugs 

Chemical drug delivery system 

Molecular packaging 

108 

2 Biological 

Receptor/vector-mediated delivery of 

chimeric peptides 

Viral vectors 

Cell-penetrating peptide-mediated 

drug delivery 

109 

3 
Colloidal drug 

carriers 

Micelles and microemulsions 

Nanospheres and nanocapsules 

Liposomes 

SLNs 

Dendrimers 

Polyethyleneimine derivatives 

Carbon nanotubes, single- multi-

walled carbon nanotubes 

106 

4 Invasive techniques Pharmacological Intracerebral implants 110 
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Intraventricular/intrathecal/ interstitial 

delivery 

Biological tissue delivery 

5 

Blood-brain 

barrier 

disruption 

Convection-enhanced delivery 

Osmotic blood-brain barrier 

disruption strategy 

Biochemical blood-brain barrier 

disruption strategy 

Ultrasound-mediated blood-brain 

barrier disruption strategy 

111 

6 

Alternative 

routes for 

central nervous 

system drug 

delivery 

Olfactory and trigeminal pathways to 

the central nervous 

system, intranasal delivery 

Iontophoretic delivery 

112 

 

 
Figure No.1: Creation of novel drug delivery techniques based on NPs technology for the brain

95
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Figure No.2: Various nanocarriers are employed in drug delivery systems 

 
Figure No.3: Multiple drug molecule incorporations with nanocarriers 

 
Figure No.4: Principal routes via which nanosystems can pass the blood-brain barrier 
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CONCLUSION 

Nanomedicine, which uses nanotechnology to 

improve drugs and healthcare, is a new subject with 

great potential for the twenty-first century. Through 

disease localization, nanomedicine can target 

biological cells with medications, diagnostics, and 

therapeutics. Cell theory served as the basis for the 

diagnosis at first, but more recent research has 

taken us to the atomic and molecular levels. 

Consequently, materials with nanoscale sizes have 

vast surface areas, structure, and form that improve 

their potential for diagnosis and therapy. 

Nanomaterials in delivery applications so primarily 

aim to deliver the required molecules to their target 

locations while minimizing side effects and 

optimizing therapeutic effects. 
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